欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于LSTM-DAE谱聚类的终端区飞行轨迹模式识别方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V355

基金项目:

国家重点研发计划项目(KJZ25420200012);中央高校基本科研项目(3122022105)


A Method of Recognizing Flight Trajectory Pattern at Terminal Area Based on LSTM-DAE Spectral Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决终端区飞行轨迹数据维度高、特征信息无法准确提取的问题,提出了一种基于LSTM-DAE谱聚类进行轨迹模式识别的方法。首先,采用LSTM-DAE网络将处理后的轨迹数据集进行降维和特征提取, 进而更加准确地捕捉轨迹的非线性特征;其次,借助提取到的轨迹特征,采用谱聚类完成模式划分;最后,以天津滨海机场进场飞行轨迹数据进行实例分析。实验表明:该方法能够将高维飞行轨迹提取后进行准确聚类,可划分出6个类别的轨迹簇,实现更高的聚类质量,该方法可为有效识别终端区飞行轨迹模式特征提供支持。

    Abstract:

    In order to solve the problems that dimensionality is high and feature extraction from flight trajectory data is inaccurate at the terminal area, this paper proposes a trajectory pattern recognition method based on LSTM-DAE spectral clustering. Firstly, the paper plans to achieve dimensionality reduction and to extract feature from the processed trajectory dataset by the LSTM-DAE network, and then proceed to even more accurately capture the nonlinear features of trajectory. Secondly, spectral clustering is employed by using the extracted trajectory features to complete pattern partitioning. Finally, an example analysis is conducted on the entry flight trajectory data at Tianjin Binhai Airport. The experiment shows that this method can accurately cluster high-dimensional flight trajectories after extraction, and can be divided into six categories of trajectory clusters, achieving still higher clustering quality. And the method can provide support for effectively identifying flight trajectory pattern features at the terminal area.

    参考文献
    相似文献
    引证文献
引用本文

张召悦, 许 程.基于LSTM-DAE谱聚类的终端区飞行轨迹模式识别方法[J].空军工程大学学报,2025,26(4):40-47

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-07
  • 出版日期: