欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于深度迁移的新型机械类装备故障数量预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金(72201276)


A Prediction of Number of Faults in New Mechanical Equipment Based on Deep Transfer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对新型机械类装备在试验鉴定阶段样本量较少,难以建立故障数量预测深度模型评估保障性能的问题,采用了“迁移学习”方法,提出了Score评价指标,使用大规模成熟型别装备数据辅助新型装备故障预 测模型训练。从迁移学习的样本、特征、模型3个角度出发,以基于深度模型的迁移为重点,进行故障数量预 测研究。实例表明,基于微调的模型深度迁移在均方根误差与Score评价指标上精度分别相对提升了 46.55%和164.87%,标准差分别下降了86.71%和91.41%,远优于基于样本和特征层次设计应用的迁移 预测方法与7种典型对比模型,使得深度学习的数据驱动优势得以充分发挥。在预测精度、效果与稳定性上 具有更好表现,有利于评估新装备保障性能,推动了装备试验鉴定能力建设。

    Abstract:

    In view of the problems that samples are limited in size and difficult in establishing a deep model for predicting the number of faults to evaluate the support performance of new mechanical equipment at the stage of testing and identification, a Score evaluation index is proposed by adopting the “transfer learning” method. Large scale mature equipment data was used to assist in training the new equipment fault prediction model. Starting from the perspectives of samples, features, and models in transfer learning, with a focus on deep model-based transfer, this study conducts research on predicting the number of faults. The example shows that the precision of the fine-tuning based model deep transfer has increased by 46.55% and 164.87% respectively in the root mean square error and Score, while the standard deviation has decreased by 86.71% and 91.41% respectively. Far superior to the prediction methods based on sample and feature in design applications of transfer learning and seven typical comparative models, the data driven advantages of deep learning are fully utilized. With better performance in prediction accuracy, effectiveness, and stability, it is conducive to evaluating the support performance of new equipment and promoting the construction of equipment test and evaluation.

    参考文献
    相似文献
    引证文献
引用本文

张红梅, 程湘钧, 柳 泉, 拓明福, 唐希浪, 徐思宁.基于深度迁移的新型机械类装备故障数量预测[J].空军工程大学学报,2025,26(4):1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-07
  • 出版日期: