欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
一种基于GRU 的空中目标作战意图预测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TJ760

基金项目:

国家自然科学基金(61806219);陕西省高校科协青年人才托举计划(20220106)


A Prediction of Air Target Combat Intention Based on GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于实际空战中目标作战意图是由一系列战术动作实现的,因此目标状态呈现时序、动态的变化特征。传统作战意图识别方法仅依靠单一时刻进行推理,方法不够科学有效,并且没有提前预测敌方意图的效果。在门控循环单元(GRU)的基础上引入双向传播机制和注意力机制,提出一种空中目标作战意图预测方法。通过分层的方法构建空战意图特征集,编码生成数值型时序特征,并将领域专家知识经验封装成标签;运用BiGRU 网络对空战特征进行深层次学习,并利用注意力机制自适应分配特征权重,以提升空中目标作战意图识别准确度。为实现对目标意图的提前预测,在意图识别之前引入空战特征预测模块,建立预测特征与作战意图类型之间的映射关系仿真,实验表明,所提模型能在89.7%意图识别准确度的基础上提前一个采样点预测出敌方空中目标作战意图,在提升意图识别实时性方面具有显著意义。

    Abstract:

    In actual air combat, the target combat intention is realized by a series of tactical actions, and the target state is present to the characteristics of time sequence and dynamic change. The traditional operational intention recognition method only relies on a single moment of reasoning, which is not scientific and effective, and fails to predict the enemy’s intention in advance. Therefore, the bi-directional propagation mechanism and an attention mechanism are introduced on the basis of the gated recur-rent unit (GRU), and a method for predicting the combat intention of aerial targets is proposed. This method is to construct the air combat intention feature set through a layered method, encode to generate numerical time series features, and encapsulate domain expert knowledge and experience into labels. The BiGRU network is used for in-depth learning of air combat features, and the attention mechanism is used to adaptively assign feature weights to improve the accuracy of air target combat intention recognition. In order to realize the advance prediction of the target intention, the air combat feature prediction module is introduced before the intention recognition, and the mapping relationship between the predicted feature and the combat intention type is established. The simulation experiments show that the proposed model can predict the combat intention of the enemy’s air target by one sampling point in advance based on the accuracy of 89.7% intention recognition, and has obviously significance in improving the real-time performance of intention recognition.

    参考文献
    相似文献
    引证文献
引用本文

雷 蕾, 滕 飞, 权 文, 倪 鹏.一种基于GRU 的空中目标作战意图预测方法[J].空军工程大学学报,2025,26(2):100-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-31
  • 出版日期: