欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于深度学习的导航装备轴承剩余使用寿命预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:


A Navigational Equipment Bearing Remaining Useful Life Prediction Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为导航装备的重要部件,轴承影响着导航装备的定位精度和保障能力。在装备剩余使用寿命(RUL)预测中,传统的机器学习算法在处理复杂非线性传感信号问题上存在局限性,为此提出了一种基于注意力机制(AM)和双向长短期记忆网络(Bi-LSTM)的轴承RUL预测框架(Bi-LSTM-A)。该框架在前端加入一维卷积神经网络(CNN)从原始传感器信号中提取局部特征,然后利用双向长短期记忆网络与注意力机制相结合的方式对信号进行分析预测,最后经过网络末端的全连接层输出预测结果。通过与同类算法的对比实验表明,该方法能够准确地预测装备剩余使用寿命,具有较好的预测效率和预测精度。

    Abstract:

    As a crucial component of navigation equipment, bearings affect the positioning accuracy and safeguarding capability of the navigation equipment. In predicting the remaining useful life (RUL) of equipment, traditional machine learning algorithms are limited to dealing with the problems of complex nonlinear characteristic signals. For the above-mentioned reasons, a new prediction framework for RUL of bearing based on attention mechanism(AM) and bidirectional long short-term memory (Bi-LSTM) is proposed (Bi-LSTM-A). First, a one-dimensional convolution neural network (CNN) is added to the front of the structure to extract local features from the original signal sequence, and then, the signals are analyzed and predicted by combining bidirectional long short-term memory network with attention mechanism. finally, the predicted results are output through the fully connected layers at the end of the network. In comparison with the similar algorithms, the results show that the proposed method can accurately predict the equipment remaining useful life, and is good in predicting efficiency and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

党慧莹, 李海林, 吴北苹, 余佳宇, 庄银传.基于深度学习的导航装备轴承剩余使用寿命预测[J].空军工程大学学报,2025,26(2):81-88

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-31
  • 出版日期: