欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于RBF神经网络的飞机油量计算方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V241

基金项目:


Research on the Algorithm of Aircraft Fuel Quantity Based on RBF Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前飞机燃油测量采用的查表插值油量计算方法效率低,以及神经网络应用于飞机油箱油量计算存在的精度不高、容错性不好等问题,开展了基于径向基函数(RBF)神经网络的飞机油量计算方法研究。通过改善油箱体积特性数据库的离散分布优化训练样本质量,改进神经网络训练算法提高对输入数据误差容错性,采用遗传算法优化神经网络设计参数,有效提升了RBF神经网络在油量计算中的泛化能力和训练效率。经某型飞机燃油箱计算实例和地面试验验证表明,油箱模型数据离散方法能更为准确描述油箱体积特性,与等距切割方法相比测试样本插值计算均方根误差下降34.8%。构建的RBF神经网络具有较好的计算精度,计算效率较插值计算方法提升了约5倍。改进算法与正交最小二乘法(OLS)算法相比,当输入参数存在误差时测试样本预估均方根误差下降61.5%,容错性明显提升,具有工程实用价值。

    Abstract:

    In view of the problems that the look-up table interpolation method used in aircraft fuel measurement is low in efficiency, low in accuracy, and is not good at the fault tolerance of the neural network applied to the calculation of aircraft fuel quantity, the fuel quantity algorithm based on RBF neural network is studied. By enhancing the discrete distribution of the fuel tank volume characteristic database to optimize the training samples, refining the neural network training algorithm to improve the fault tolerance for the input data, and employing genetic algorithm to optimize design parameters of the neural network, generalization capability and training efficiency of the RBF neural network in the fuel quantity calculation are effectively improved. According to the calculation example of an aircraft fuel tank and corresponding ground tests, the data dispersed method of tank models in this paper can further accurately describe their volume characteristic, with a 34.8% reduction in RMSE of interpolation calculation compared to the equidistant cutting method. The developed RBF neural network is good at the calculation accuracy, improving efficiency compared with the interpolation calculation method being about 5 times; Compared with the OLS algorithm, the improved algorithm has a 61.5% reduction in the estimated RMSE of test samples when the input parameters have errors, and the fault tolerance is significantly improved; The proposed method has a certain of practical value in engineering.

    参考文献
    相似文献
    引证文献
引用本文

罗云鹤, 赵 铮.基于RBF神经网络的飞机油量计算方法[J].空军工程大学学报,2025,26(2):26-33

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-31
  • 出版日期: