欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于双层遗传算法的静态防空反导杀伤网构建方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183;E919

基金项目:

国家自然科学基金(61772392)


Static Air Defense and Antimissile Kill-Net Construction Method Based on Double-Layer Genetic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在防空反导作战中,构建高效的杀伤网是确保反导任务成功的关键环节,然而杀伤网构建问题的优化建模和求解是一个难题。从组合优化的角度出发,对静态的杀伤网构建问题进行优化建模并提出高效求解方案;针对杀伤网构建问题的特点,建立了混合整数规划模型,并使用一种基于双层规划的优化建模方案进行简化,通过任务分配和冲突消解的主从问题协同降低求解难度,随后设计一种基于双层遗传算法的求解框架进行优化实验。在4组不同规模的环境实验测试中,算法能够快速找到较优解,并且对较大规模问题能保持良好的求解能力以及良好的可解释性。为防空反导领域的静态的杀伤网自主智能构建提供思路,可作为动态杀伤网调整的研究基础。

    Abstract:

    In air defense and antimissile operations, constructing an efficient kill-net is a key part to ensuring the success of air defense tasks, while it is tricky to model and to optimize such problems. This paper aims to model the construction of static kill-net from the perspective of combinatorial optimization and propose efficient optimization methods. Considering the characteristics of the kill-net construction problem, this paper establishes a mixed-integer programming model and uses a bilevel optimization modeling scheme for simplification. By the cooperation of the leader problem of tasks assignment and the follower problem of resolving conflicts, the optimization difficulty is reduced. Subsequently, a solution framework based on a bilevel genetic algorithm is designed. In experimental tests on 4 sets of different-scale environments, the algorithm is able to get a fine result quickly, with great interpretability and a good capabilities for solving larger-scale problem. This work provides insights for the autonomous intelligent construction of static kill-net in the field of air defense and could serve as the basis for research focusing on dynamic kill-net adjustment.

    参考文献
    相似文献
    引证文献
引用本文

付昱龙,张海宾,郭相科,戚玉涛.基于双层遗传算法的静态防空反导杀伤网构建方法[J].空军工程大学学报,2025,26(1):59-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-16
  • 出版日期: