欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于改进SE-ResNet-BiLSTM的航空发动机中介轴承故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V263.6

基金项目:

山东省自然科学基金(ZR2019MF063)


A Fault Diagnosis for Inter-Shaft Bearing of Aero-Engine Based on Improved SE-ResNet-BiLSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现阶段航空发动机中介轴承振动信号易受噪声干扰,故障特征难提取导致的故障诊断精度较低的问题,提出一种基于改进残差注意力网络和双向长短期记忆神经网络(BiLSTM)的航空发动机中介轴承故障诊断方法。首先,将原始振动信号作为模型输入,利用一维宽卷积从原始数据中提取局部空间特征并抑制高频噪声;然后,使用结合改进通道注意力的残差网络增强模型对重要特征的关注,减少模型运算量,将处理后的特征输入到BiLSTM 中,进一步提取时序相关性特征;最后,将特征输入到Softmax层进行故障分类。使用哈工大航空发动机中介轴承数据集进行实验验证,结果表明,即使在信噪比为-4 dB的高噪声环境,所提模型仍能保持98.64%的诊断精度,优于其他对比模型,证明该模型具有更好的特征提取能力和抗噪性。

    Abstract:

    Aimed at the problems that fault diagnosis is low to accuracy caused by extracting fault features difficultly, and vibration signals of inter-shaft bearing on aero-engine are susceptible to noise interference at present, a fault diagnosis method is proposed for aero-engine inter-shaft bearing based on the improved residual attention network and bidirectional long short-term memory neural network(BiLSTM). Firstly, taking the original vibration signal as a model input, the local spatial features are extracted from the raw data by utilizing one-dimensional wide convolution, and the high-frequency noise is suppressed. And then, a residual network in combination with the improved channel attention is utilized for enhancing model attention to important features and reducing model com putational complexity, and the processed features are input into BiLSTM to further extract temporal correlation features. Finally, the features are input into the Softmax layer for fault classification. The experimental validation is conducted by using the Harbin Institute of Technology Aeroengine intershaft bearing dataset, and the results show that the proposed model can maintain the diagnostic accuracy of 98.64% even in the high noise environment with the signal-to-noise ratio of -4 dB, is prior to the other comparative models, and has the better ability to extract features and resist noise.

    参考文献
    相似文献
    引证文献
引用本文

郁万康, 冷子文, 高军伟, 车鲁阳.基于改进SE-ResNet-BiLSTM的航空发动机中介轴承故障诊断[J].空军工程大学学报,2024,25(6):35-42

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-06
  • 出版日期: