欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于自适应参数估计的微动时频表征重构方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN95

基金项目:

国家自然科学基金面上项目(62371468,62301599,62271500,62131020)


A Reconstruction Method of Micro-Motion TFR Based on Adaptive Parameter Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对数据缺失条件下的目标微动回波时频表征重构问题,提出了一种基于自适应参数估计的微动时频表征重构方法。首先,将缺失的微动时频表征重构问题建模为基于LP范数最小化的稀疏重构问题,其次,引入哈达玛积参数将LP 范数最小化稀疏重构问题转化为多个L2 范数联合最小化问题,并采用迭代吉洪诺夫正则化求解,同时在每次迭代过程中根据重构结果自适应估计正则化参数,最后,采用除偏处理减小了重构时频表征的振幅衰减。与传统微动回波时频表征重构方法相比,所提方法避免了需要人工设置正则化参数不足的问题,并且重构的时频表征更加完整。仿真实验和实测数据处理结果验证了所提方法的有效性和稳健性。

    Abstract:

    In view of the time-frequency representation (TFR) reconstruction of the micro-motion signals under conditions of incomplete data, a reconstruction method of micro-motion is proposed based on the adaptive parameter estimation. Firstly, the missing micro-motion TFR reconstruction problem is modeled on the LP norm minimization sparse reconstruction problem, and by introducing Hadamard product parameter (HPP), the LP norm minimization sparse reconstruction problem is transferred to a joint minimization problem with multiple L2 norm, and solved by using iterative Tikhonov regularization. Simultaneously, the regularization parameter is estimated adaptively in each iteration based on reconstruction results. Finally, the amplitude decay of the reconstructed TFR is reduced by the de-biasing process. Compared with the traditional micro-motion echo time-frequency representation reconstruction method, the proposed method avoids the disadvantage of setting the regularization parameter manually, and the reconstructed TFR is more complete. The effectiveness and robustness of the proposed method is verified by simulation and measured data processing

    参考文献
    相似文献
    引证文献
引用本文

李开明, 王 欢, 解 岩, 陈 卓, 高泽岳.基于自适应参数估计的微动时频表征重构方法[J].空军工程大学学报,2024,25(5):107-114

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-22
  • 出版日期: