摘要:基于轨道角动量模态变量与目标方位角变量的近似对偶关系,涡旋电磁波雷达可以实现对静止目标的二维高分辨成像,然而目标回波中的贝塞尔函数项会严重影响方位角向聚焦性能。现有基于逆投影算法的贝塞尔函数补偿方法计算量很大,难以实际应用。针对上述问题,提出一种利用U-Net卷积神经网络抑制贝塞尔函数影响、实现涡旋电磁波雷达高分辨成像的方法。首先,根据雷达目标散射分布的稀疏特性对U-Net网络进行改进,然后对目标回波信号进行二维快速傅里叶变换预处理得到目标散焦图像,将其作为改进U-Net网络的输入,并将目标理想电磁散射模型作为网络输出对网络进行监督训练。最后,基于未知目标回波信号,将预处理后的目标散焦图像输入到训练完备的网络模型中,即可得到聚焦良好的高分辨成像结果。仿真实验证明,该成像方法能够有效提高目标成像聚焦性能,且该网络模型在噪声存在的情况下仍具有较好的泛化能力。