欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
非精确情报信息环境下跨域无人集群动态目标分配算法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V279;E925.4

基金项目:

国家自然科学基金项目 (61703427)


Research on Dynamic Target Assignment Algorithm of Cross-Domain Unmanned Swarm in Imprecise Intelligence Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对非精确情报信息环境下跨域无人集群动态目标分配问题的算法进行了研究。首先,描述了一个实际的跨域无人机群作战场景,并对由于探测信息不精确性带来的目标位置和火力单元落点的不确定性进行了分析,在此基础上建立了目标预分配的概率模型,并设计改进的离散多目标粒子群算法求解;其次,针对作战环境中实时出现的新目标,提出了基于市场机制的合同网目标重分配算法,实时更新目标分配方案;最后,通过实验仿真验证了所提算法的有效性。

    Abstract:

    The algorithm for dynamic target allocation of cross-domain unmanned swarm in an imprecise information environment is proposed in this paper. Firstly,The paper delineats a realistic scenario of cross-domain drone swarm warfare and conducting an analysis of the inherent uncertainties in target positioning and impact points of firepower units due to the imprecision of detection information. Secondly, a probability model for target pre-allocation is developed based on this analysis, followed by the design of an enhanced discrete multi-objective particle swarm algorithm for solution purposes. Additionally, to address real-time emergence of new targets in the combat environment, a contract net-based target re-allocation algorithm, employing market mechanisms, is proposed to enable the real-time updating of target allocation schemes. Finally, the efficacy of the proposed algorithms is validated through experimental simulations. This research offers a comprehensive solution for the dynamic target allocation challenge encountered in cross-domain unmanned swarm operating in an imprecise information environment, with the potential to enhance the effectiveness and efficiency of unmanned swarm warfare.

    参考文献
    相似文献
    引证文献
引用本文

郑傲宇, 梁晓龙*, 黄骁, 陶浩.非精确情报信息环境下跨域无人集群动态目标分配算法研究[J].空军工程大学学报,2023,24(5):23-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-30
  • 出版日期: