欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
小数据集下基于修正乘性协同约束的BN参数学习
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金项目(51905405)


BN Parameter Learning Based on Modified Multiplicative Collaborative Constraints with Small Data Sets
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在一些特定情况下,获取充足样本十分困难,导致最大似然估计算法学习到的BN参数精度往往较低,并且一些实际应用领域中已涉及多父节点协同影响约束的问题。对此,通过借鉴PAVA保序回归算法思想,提出了一种小数据集下基于修正乘性协同约束的BN参数学习方法。首先,判断已知样本数据中多父节点部分的参数是否满足乘性协同约束;其次,把不满足乘性协同约束的左右两边划分为整体,用PAVA算法分别对其进行调整,针对调整后的整体,根据不同父节点组合状态对应的样本数据量,给出3种权值不同的校正方法,对每个参数进行修正,得到最终参数学习结果;最后,运用经典草地湿润网络模型对提出的方法进行仿真验证。研究结果表明,在小数据集条件下,提出的方法不仅满足了乘性协同约束,而且KL散度始终低于其他2种方法,但运行时间略高于其他2种方法约1×10-3s,影响甚微。总体上,所提算法的综合性能优于其他2种方法。

    Abstract:

    Aimed at the problems that under some specified conditions, obtaining sufficient samples is so difficult that the accuracy of the BN parameters learned by the maximum likelihood estimation algorithm is often low, and multiple parent nodes collaboration to influence constraints is involved in some areas of practical application, a BN parameter learning method based on the modified multiplicative co-constraint under small data sets is proposed by drawing on the idea of PAVA order-preserving regression algorithm. First, the paper is to determine whether the parameters in the multi-parent part of the known sample data meet the needs of the multiplicative collaborative constraint. Secondly, both the left and right sides not to meet the needs of the multiplicative co-constraint are divided into wholes, and adjusted separately by using the PAVA algorithm. And then, for the adjusted whole, three correction methods with different weights are given to correct each parameter according to the amount of sample data corresponding to the combined state of different parent nodes, and gain mean final parameter learning result. Finally, the proposed method is validated by simulation using a classical grassland wetting network model. The experimental results show that the proposed method not only meets the needs of the multiplicative cooperation constraint under small data set conditions, but also the KL scatter is always lower than the other 2 methods in addition to that the running time is slightly higher than that of the other 2 methods by about 1×10-3s with minimal impact. Generally speaking, the proposed algorithm is superior to the other 2 methods in the comprehensive performance.

    参考文献
    相似文献
    引证文献
引用本文

任智芳, 陈海洋*, 环晓敏, 尚珊珊.小数据集下基于修正乘性协同约束的BN参数学习[J].空军工程大学学报,2023,24(4):69-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-22
  • 出版日期: