欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
不确定重尾量测噪声干扰下的鲁棒目标跟踪算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN953

基金项目:

陕西省重点研发计划(2022GY-242);陕西省技术创新引导专项项目(2022GFY01-16)


A Robust Target Tracking Algorithm under Condition of Uncertain Heavy-Tailed Measurement Noise
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    不确定重尾量测噪声干扰下的鲁棒目标跟踪算法

    Abstract:

    In majority target tracking methods, the measurement noise is generally assumed to be known Gaussian distributed or asymmetric Heavy-tail distributed. However, this assumption is very limited and often does not satisfy the needs of the work in practical application. A variable inference robust cubature Kalman filter is proposed for the nonlinear target tracking with unknown time-varying asymmetric Heavy-tailed noise. The asymmetric Heavy-tailed noise is modeled by Skew-T distribution. In the process of the numerical calculation of cubature Kalman filter, the system state and measurement noise parameter are jointly estimated recursively by the variable inference. The system model and unknown asymmetric heavy tailed measurement noise parameters are obtained by variable iteration of an approximate posterior probability density function. The simulation results show that the proposed algorithm is higher than the variable Bayesian extended Kalman filter algorithm in filtering accuracy.

    参考文献
    相似文献
    引证文献
引用本文

马天力,张扬,刘盼,高嵩.不确定重尾量测噪声干扰下的鲁棒目标跟踪算法[J].空军工程大学学报,2022,23(6):64-70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-02
  • 出版日期: