欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于干扰效率的星地认知网络功率分配算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN927

基金项目:


A Power Allocation Algorithm for SatelliteTerrestrial Cognitive Networks Based on Interference Efficiency
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对Underlay模式基于能量效率的功率控制算法未能准确反映次用户与主用户之间干扰性能导致系统容量下降的问题,综合考虑次用户能量有限及卫星链路和地面链路的差异性,定义干扰效率为认知卫星用户总的传输速率与地面基站接收到的干扰的比值,建立了基于干扰效率的星地认知网络上行链路功率分配模型,在此基础上提出一种基于干扰效率的功率分配算法。通过引入干扰门限约束及信干噪比约束条件,利用非线性分式规划理论和拉格朗日对偶法求解出最优功率。仿真结果表明:该算法能在较好满足次用户通信质量的前提下,有效减少对主用户的干扰,提升系统的干扰效率。

    Abstract:

    Aimed at the problem that the Underlay mode power control algorithm based on energy efficiency fails to accurately reflect the interference performance between the secondary users and the primary users resulting in system capacity degradation, the interference efficiency is defined as the ratio of the total transmission rate of the cognitive satellite user to the interference received by the terrestrial base station, taking into consideration of the limited energy of the secondary users and the difference between the satellite link and the terrestrial link, an interference efficiencybased uplink power allocation model for satelliteground cognitive networks is established. On the basis of the abovementioned, an interference efficiencybased power allocation algorithm is proposed. By introducing the interference threshold constraint and the signaltonoise ratio constraint, the optimal power is solved by using the nonlinear fractional programming theory and the Lagrange duality method. The simulation results show that the algorithm in this paper can effectively reduce the interference to the primary user and improve the interference efficiency of the system under conditions of premise in satisfaction of the communication quality of secondary user.

    参考文献
    相似文献
    引证文献
引用本文

朱圣铭,杨霄鹏,刘东健,卫星.基于干扰效率的星地认知网络功率分配算法[J].空军工程大学学报,2021,22(3):62-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-19
  • 出版日期: 2021-06-30