欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于改进麻雀搜索算法与支持向量机的光纤陀螺故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V249.32

基金项目:


A Fault Diagnosis of Fiber Optic Gyro Based on ISSASVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光纤陀螺输出信号噪声成分复杂、故障特征难以提取的问题,提出一种基于改进麻雀搜索算法与支持向量机的光纤陀螺故障诊断方法。首先,对光纤陀螺正常信号和故障信号进行3层小波包分解以提取特征向量;其次,通过引入改进Logistic混沌映射和自适应t分布策略,加入边界探索和警戒解除机制,改进麻雀搜索算法并用于支持向量机参数寻优;最后,建立支持向量机模型进行光纤陀螺故障的识别和诊断。经实例分析,提出的方法可有效用于光纤陀螺故障诊断,与麻雀搜索算法、灰狼优化算法、粒子群算法、遗传算法和天牛须算法对比,可有效提高光纤陀螺故障诊断准确率。

    Abstract:

    Aimed at the problems that the noise components are complex and the fault features in fiber optic gyro output signals are hard to extract, a fault diagnosis method based on improved sparrow search algorithm and support vector machine (SVM) is proposed. Firstly, the normal and the fault signals of fiber optic gyro are decomposed by threelayer wavelet packet to extract feature vectors. Secondly, by introducing the improved Logistic chaotic map and adaptive t distribution strategy, and adding the boundary exploration and alarm cancellation mechanism, the ISSA is proposed and applied to the parameter optimization of SVM. Finally, a SVM model is established for fault identification and diagnosis of fiber optic gyro. The results show that the method proposed in this paper can be effectively used in fiber optic gyro fault diagnosis, and simultaneously effectively improve the accuracy of fiber optic gyro fault diagnosis compared with the sparrow search algorithm, the gray wolf optimization, the particle swarm optimization, the genetic algorithm and the Beetle Antennae Search.

    参考文献
    相似文献
    引证文献
引用本文

陈鑫,肖明清,孙曜,文斌成,刘双喜,仇晨阳.基于改进麻雀搜索算法与支持向量机的光纤陀螺故障诊断[J].空军工程大学学报,2021,22(3):33-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-19
  • 出版日期: 2021-06-30