欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于双向LSTM神经网络的航空发动机故障预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V23; TP183

基金项目:


Fault Prognostic of Aeroengine Using Bidirectional LSTM Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确的航空发动机故障预测能够为维修决策提供依据,提高装备完好率,避免灾难性故障并最小化经济损失。根据航空发动机传感器数据特点,提出一种基于双向长短期记忆(LSTM)神经网络的故障预测方法,建立故障预测模型,包括数据预处理、网络模型设计、训练与测试,得到在多种工作条件和故障下具有较强泛化能力的神经网络预测模型。使用C-MAPSS数据集对模型进行仿真验证,所提出的双向LSTM故障预测模型通过与RNN、GRU、LSTM时间序列模型对比,误差下降33.58%,得到更高的预测精度,非对称评分下降71.22%,具有更好的适应性。

    Abstract:

    Aeroengine fault prognostic can provide basis for maintenance decisionmaking which can help to avoid catastrophic failures and minimize economic losses. According to the characteristics of aeroengine sensor data, a fault prognostic method based on bidirectional long shortterm memory (LSTM) neural network is proposed. A fault prognostic model is established, including data preprocessing, network design, training and testing. The model structure has strong generalization ability under various working conditions and faults is obtained. The model was validated using the CMAPSS data set. Compared with the RNN, GRU and LSTM time series models, the results show that the proposed Bidirectional LSTM fault prognostic model has an average error of 33.58%, which has better adaptability. The asymmetric score decreased by 71.22%, resulting in higher prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

曾慧洁,郭建胜.基于双向LSTM神经网络的航空发动机故障预测[J].空军工程大学学报,2019,20(4):26-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-10-23
  • 出版日期: