欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
PSO稀疏分解在齿轮信号故障特征提取中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51175509)


PSO Sparse Decomposition and its Application in the Fault Signal Feature Extraction of Gear
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对齿轮早期故障诊断,传统的信号处理方法受噪声干扰大,严重影响了齿轮故障特征提取。结合粒子群(PSO)算法和稀疏分解算法提出PSO稀疏分解,利用PSO在搜索最优解方面的优势降低了稀疏分解的计算复杂度,并提出了“匹配度”作为信号的特征量。通过对模拟信号和某型航空发动机齿轮毂振动信号的分析,证明PSO稀疏分解在强噪声背景下具有很好的稳健性,提高了振动信号的信噪比,能够有效提取齿轮的故障特征,故障信号的“匹配度”比正常信号平均高出0~4左右,与传统方法相比,优势较为明显。

    Abstract:

    As for the fault diagnosis of gear at early stage, the conventional methods of signal processing are significantly interfered by noise, blocking the fault feature extraction of gear. This paper proposes a PSO sparse decomposition combined with PSO (Particle swarm optimization) algorithm and sparse decomposition algorithm, lowering the computing complexity of sparse decomposition, and also proposes a ‘Matching index’ as the signal feature. The research result of the simulated signal indicates that PSO decomposition performs well under condition of strong noise and improves the SNR greatly. What’s more, the PSO sparse decomposition is proved efficiently in fault signal feature extraction of gear through the analysis of the signal from aeroengine gear hub. The ‘Matching index’ of fault signal is 04 higher equally than that of normal signal. This is superior obviously to the traditional methods.

    参考文献
    相似文献
    引证文献
引用本文

巩孟林,陈卫,钟也磐. PSO稀疏分解在齿轮信号故障特征提取中的应用[J].空军工程大学学报,2018,19(3):13-18

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-06-26
  • 出版日期: