欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
窄带雷达网弹道目标微动特征提取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN957

基金项目:

国家自然科学基金(61372166;61501495)


Micro-motion Feature Extraction of Ballistic Targets Based on Narrowband Radar Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目标微动特征是弹道中段识别的有效特征之一。针对单部雷达获取目标微动信息的局限性,提出了一种利用窄带雷达网进行弹道目标进动特征提取的方法。首先,建立了锥体进动模型和窄带信号模型,得到了散射点微多普勒表达式。然后,在锥体非理性散射点转化为理想散射点的基础上,通过频谱分析,实现了不同视角下散射点的匹配关联。最后,利用锥顶微多普勒信号对锥底进行补偿,在雷达视角方差最小时求得补偿系数。再联立2部雷达的微多普勒信息即可求出参数。仿真结果表明该方法能够精确提取微动参数和结构参数。

    Abstract:

    Targets’ micromotion feature is one of the effective features used for recognition at the middle section of the ballistic curve. Aimed at the problem that a single radar is rather limited in extracting micromotion information, this paper proposes a novel algorithm based on the narrowband radar network to extract precession features. First, a coneshaped target model and a narrowband signal model are established. Then, each scattering point in different perspective is matched by frequency analysis based on transforming nonideal scattering point into ideal scattering point. Finally, by using the microDoppler of conic node to compensate the bottom microDoppler of cone, compensation coefficient is solved when the radar aspect variance is minimal. Furthermore, parameters are obtained by combining the microDoppler of two radars. The simulation results show that the algorithm can extract micromotion parameters and structured parameters accuracy.

    参考文献
    相似文献
    引证文献
引用本文

许丹,田波,冯存前,耿志远.窄带雷达网弹道目标微动特征提取[J].空军工程大学学报,2017,18(6):47-51

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-02
  • 出版日期: