欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
MP-GWO算法在多UCAV协同航迹规划中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V279

基金项目:

国家自然科学基金(61601505);航空科学基金(20155196022);陕西省自然科学基金(2016JQ6050)


Application of MP-GWO Algorithm in Multiple Cooperating UCAV Path Planning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多无人作战飞机(UCAV)协同航迹规划是多UCAV协同作战的重要组成部分,对协同作战的结果有很多的指引作用。多UCAV协同航迹规划属于多峰值优化函数求解问题,其求解稳定性比较差。为解决多UCAV协同航迹规划求解稳定性较差的问题,首先在对影响多机协同约束条件研究分析的基础上,结合单机航迹规划求解中的核心指标,建立了多UCAV协同航迹优化函数;其次利用多种群灰狼算法(MP-GWO)在求解多峰值优化函数问题上比较稳定的特点进行求解,最后将MP-GWO分别与GWO算法、EA算法和在新增威胁环境下的求解结果相比较来验证算法的优越可行性。仿真结果表明,MP-GWO算法对多峰值问题具有求解稳定性,能够适应突发威胁环境下的求解。

    Abstract:

    Multi UCAV Cooperative Path Planning is an important part of multi UCAV cooperative combat, and the results of collaborative operations have many guiding roles. Multi UCAV cooperative path planning belongs to multi peak function optimization problem, and the solution stability is relatively poor. In order to solve this problem, first, on the basis of analysis under condition of multi Aircraft Cooperative limitations, and combined with the core index of single track planning, the paper builds up multi UCAV cooperative route optimization function. Then, the paper utilizes the characteristics of stability of multi swarm algorithm with the gray wolf Lee(MP-GWO) in solving multi peak optimization problems on the function to solve it. Finally, the paper compares the MP-GWO with the GWO algorithm, EA algorithm and solution in the new threat environment superior to verify the feasibility of the algorithm. The simulation results show that the MP-GWO algorithm has the stability of the multi peak problem in solving environment, and adapts to unexpected threat circumstances.

    参考文献
    相似文献
    引证文献
引用本文

周瑞,黄长强,魏政磊,赵克新. MP-GWO算法在多UCAV协同航迹规划中的应用[J].空军工程大学学报,2017,18(5):24-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-10-25
  • 出版日期: