欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于网络对抗火力分配的改进量子免疫克隆算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP959.1

基金项目:

国家自然科学基金(71501184);航空科学基金(20155196022)


Improved Quantum Immune Clonic Algorithm in WeaponTarget Assignment under Conditions of Network Confrontation Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    考虑对于目标与目标组成网络的攻击总收益最大、自身消耗最小的原则,建立网络对抗条件下火力分配多目标优化模型,引入随机网络拓扑结构,分析火力分配方案对于随机网络的攻击效果,采用改进量子免疫克隆多目标算法对模型进行求解。通过实验仿真,分析攻击收益与不同弹药成本之间的变化情况,发现使用改进算法得到火力分配方案的攻击效率比标准算法平均高出23%;对算法的收敛性与Pareto解分布的均匀性进行研究,发现改进算法得到的Pareto解分布均匀性比标准算法提高了42%,验证了模型的有效性以及改进算法的优越性。

    Abstract:

    In consideration of the principles that attack benefits of network combined targets with targets are maximal and its own consumption is minimal in total, a multiobjective optimization model is established under conditions of network confrontation environment in fire distribution. Under conditions of random network topology introduced, the effect of fire distribution corresponding to the random network is analyzed. This paper adopts quantuminspired immune clonic multiobjective optimization algorithm to solve the model of fire distribution. Though experimental simulation, the change circumstances of the total attack benefits are analyzed by using different cost ammunition. The attack efficiency of the fire distribution scheme increases by 23% by using the improved algorithm over the fire distribution scheme by using standard algorithm. The convergence of the algorithm and superiority of Pareto solution distribution are studied. The experiments demonstrate that the Pareto efficiency solution distribution increases 42% by using the improved algorithm over using the standard algorithm. The superiority of the model and the efficiency of the algorithm are verified.

    参考文献
    相似文献
    引证文献
引用本文

冯超,景小宁,李秋妮,夏菲,费凯.基于网络对抗火力分配的改进量子免疫克隆算法[J].空军工程大学学报,2016,17(4):29-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-07-30
  • 出版日期: