摘要:应用当前统计模型跟踪机动目标时,模型参数机动频率和加速度极限值需要根据经验事先设定,在假设不准确的情况下,大大降低了模型的跟踪精度。针对此问题,基于截断正态概率密度模型,提出了一种新的参数自适应跟踪滤波算法。该模型算法通过使用距离函数来表征目标进行机动的强弱状况,采用指数型调整函数自适应调整目标的加速度极限值和机动频率,从而实现了对系统状态噪声和滤波增益的自适应调整,提高了机动模型与目标实际机动情况的匹配程度,提升了滤波器的跟踪性能。仿真结果表明:与常规ACS和TGPMKF算法相比,新算法在跟踪机动目标时,性能更优。