欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于随机共振的振动故障特征提取及可分性分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V263.6

基金项目:

国家自然科学基金资助项目(51105374)


Vibration Fault Feature Extraction Based on Stochastic Resonance and Its Separability Research
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高故障特征提取的准确性,将随机共振算法用于振动信号的预处理,在此基础上进行故障特征的提取。首先介绍了随机共振的降噪原理,并对适用于大参数信号的变尺度随机共振进行了分析,提出一种快速的频率压缩比R的寻优方法;为了验证本文提出的特征提取方法,分别提取了基于时域、频域和时频域的振动故障特征集;最后,应用类内类间离散度指标对故障集的分类性能进行了分析。分析结果表明,由随机共振输出信号提取得到的特征集的分类指标要明显优于原始信号提取的特征集,特征提取的准确性得到显著提高。

    Abstract:

    In order to improve the accuracy of fault feature extraction, the stochastic resonance (SR) method is proposed in the pretreatment of vibration signals, then the fault feature is extracted based on the method. First, the de-noising principle of SR is presented, and the mutable scale SR, which is suitable for large parameter signal, is analyzed. Then a fast optimization method of frequency compression ratio R is put forward. The vibration fault feature sets based on time domain, frequency domain, time-frequency domain are extracted respectively to test the proposed feature extraction method. Finally, the discrete degree index based on between-class and within-class is applied to analyze the classification performance of feature set. The analysis result shows that the classification indexes of the feature sets extracted from SR output signal are obviously superior to those from the original signal, the feature extraction accuracy is improved notably.

    参考文献
    相似文献
    引证文献
引用本文

任立通,张建新,谢寿生,王磊,苗卓广,胡金海.基于随机共振的振动故障特征提取及可分性分析[J].空军工程大学学报,2013,(4):9-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-24
  • 出版日期: