欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于优化BP神经网络算法的网络质量评价
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.97

基金项目:

陕西省自然科学基金资助项目(2012JZ8005)


Network Quality Evaluation Research Based on An Optimized BP Neural Network Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的BP神经网络算法,提出了在变步长BP神经网络算法基础上的优化方案,并将其应用于网络质量评价当中。在优化方案中,对步长的上升和下降阶段分别采用不同策略进行优化。理论分析表明:优化后的算法能够克服传统算法权值收敛过慢,和变步长算法误差收敛中的震荡问题。仿真表明,优化后的算法会使神经网络的学习误差和网络质量分类的总体误差明显下降并大幅提高评价的准确性。优化算法较传统算法相比误差收敛过程更加稳定,且学习误差下降达9.64%,网络质量分类的总体误差下降达23.1%;优化算法的验证准确率在传统算法的基础上提高了19.65%,在变步长算法的基础上提高了9.88%。由此可见,优化算法在BP神经网络的预测精度方面起到了大幅度提高的作用。

    Abstract:

    As for the existing neural network algorithm,a new kind of optimized BP neural network algorithm is put forward and applied to network quality evaluation. In the optimization scheme, the stages of rise and fall are optimized by adopting different strategies.The theoretical analysis shows that the use of the optimized algorithm can overcome the previous shortcomings of slow weight convergence and shaking problem in error convergence .The experiments show that the use of the optimized algorithm will decrease the learning error of neural network and the quality classification error obviously, and simultaneously improve the accuracy of the evaluation significantly. The error of the optimized algorithm is more stable than that of the traditional algorithm during the process of convergence. As the result, the learning error falls by 9.64% and the decline of quality classification error is 23.1%. Compared with the traditional and step size variable algorithm, the use of the optimized algorithm raises the checking accuracy rate separately by 19.65%and 9.88%. It's obvious that the optimized algorithm is effective in raising the prediction accuracy of the BP neural network by a large margin.

    参考文献
    相似文献
    引证文献
引用本文

申健,夏靖波,孙昱,王芳,王霖.基于优化BP神经网络算法的网络质量评价[J].空军工程大学学报,2013,(2):81-85

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-24
  • 出版日期: