欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
多元量化SIFT视觉特征提取方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V279

基金项目:

国家自然科学基金资助项目(61001111;61104056)


Multi-quantifying SIFT to Extract Vision Key Points
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视觉特征提取质量决定了UCAV认知导航的效能。为实现UCAV认知导航的高鲁棒性特征点提取,提出一种特征点优选的多元量化MQ-SIFT方法。针对SIFT模拟特征序列分布不均匀、正确匹配率不高的缺陷,提出采用多值量化与比特抽取结合法对模拟特征序列进行多元量化,并且分析验证了该方法的优越性能。为确保高鲁棒性特征点用于认知导航,对特征点进行了优选,给出了优选准则,提出了搜索最大连通集的改进迭代互欧氏距离方法。仿真结果表明:在图像信噪比大于10 dB时,MQ-SIFT算法及其优选的特征点具有较高的正确匹配率,并且其匹配率能够满足认知导航系统需求。

    Abstract:

    The extraction of vision key-points decides directly cognitive navigation efficiency for UCAV. In order to extract high robust key-points for UCAV, an algorithm named multi-quantifying scale invariant feature transform (MQ-SIFT) with key-points optimization is proposed. According to the deficiency of SIFT algorithm in analogue feature vectors' balance and correct matching score, a method combining the multiple value quantifying and reshaping operation is presented to quantify analogue feature vectors. The analysis and simulation results verify the better properties of this method. Furthermore, in order to perfect the property of MQ-SIFT with fewer robust key-points, the optimization rules are discussed, and an iterative cross-Euclidean distance search method is proposed to search the maximum connected set. Simulation results show that MQ-SIFT algorithm has higher correct matching score with signal-to-noise (SNR) above 10 dB, and their matching score can meet the requirements of cognitive navigation system.

    参考文献
    相似文献
    引证文献
引用本文

袁银勇,吴德伟,邰能建,戚君宜,周阳.多元量化SIFT视觉特征提取方法[J].空军工程大学学报,2012,(4):65-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-17
  • 出版日期: