欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
优势变精度粗糙集在UCAV威胁估计中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V279

基金项目:

国家“863”计划资助项目(2008AAXX50703);空军工程大学优秀博士学位论文创新基金资助项目(BC08002)


Dominance Variable Precision Rough Sets and Its Application in Threat Assessment of UCAV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对对象属性包含偏好信息及对象属性数据可能存在噪声或者一定程度的不完整的问题,在对经典粗糙集理论分析的基础上,引入优势变精度粗糙集方法,给出了优势变精度粗糙集算法的具体步骤,并结合UCAV作战特点,将其运用到UCAV威胁估计过程中。建立了基于优势变精度粗糙集方法的UCAV威胁估计决策信息系统,给出了决策系统所包含的条件属性和决策属性,并通过实例进行了分析。由结果可知,该决策方法实现简单,能正确对目标的威胁等级进行估计,且得出的规则以一定置信度给出,保证了规则的一致性,对于包含偏好属性的决策信息系统,该方法可以辨识出规则之间的不相容性。

    Abstract:

    To solve the problems that some objects' attributes contain preference information and noise may exists in the objects' attributes or the attributes are incomplete, based on the analysis of traditional rough sets theory, a dominance variable precision rough sets method is put forward and the concrete steps of the dominance variable precision rough sets algorithm are given. According to the UCAV's combat characteristics, the algorithm is applied in the process of UCAV's threat assessment. A decision-making information system of UCAV's threat assessment based on the dominance variable precision rough sets method is brought forward, which is demonstrated in an example. Condition attributes and decision-making attributes in the decision-making system are also given. The result shows that the algorithm is a good solution to the problems above and the threat grade of the target is assessed properly. Decision-making rules are obtained with certain credibility, which ensures the consistency of the rules. Regarding the decision-making information system with preference attributes, the incompatibility among the rules can be distinguished by using this method.

    参考文献
    相似文献
    引证文献
引用本文

胡杰,赵辉,黄长强,肖树臣.优势变精度粗糙集在UCAV威胁估计中的应用[J].空军工程大学学报,2009,(5):27-31

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-24
  • 出版日期: