欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于NFI直推式学习算法的故障诊断方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP277

基金项目:


Fault Detection Based on Transductive Reasoning Method of Neural-fuzzy Inference
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在故障特征数据空间中,搜索输入数据最相邻的训练数据作为子训练数据集,用最速下降法对模型模糊规则参数进行优化。用Fisher's iris数据集仿真并同自适应神经模糊推理系统(ANFIS)比较,平均试验误差降低了15%,运算速度提高了约30%。将一组采自航空发动机实际试车故障特征数据输入到诊断模型中,模型能准确识别发动机存在的三类故障状态,说明了此算法对解决一些故障诊断问题的有效性。

    Abstract:

    This paper searches the nearest training data set as the training data sub-set in fault characteristics data space, and applies the steepest descent method (back-propagation) to optimizing the parameters of the fuzzy rules in the local model. Then though simulation on Fisher's iris data set and comparison with adaptive neural fuzzy inference system (ANFIS) the average test error is reduced by 15% and the operation speed is increased by about 30%. After a fault characteristics data set from actual aeronautic engine test is put in this fault detection model system, the model system can accurately identify the three kinds of fault states existing in the engine, and the result shows that the fault diagnostic strategy is efficient and available for some fault diagnosis problems.

    参考文献
    相似文献
    引证文献
引用本文

张博, 陆阿坤.基于NFI直推式学习算法的故障诊断方法[J].空军工程大学学报,2007,(2):18-21

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-17
  • 出版日期: