欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
改进的SVM决策树分类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

陕西省自然科学基金资助项目(2004F36)


An Improved Algorithm for SVM Decision Tree
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决多类分类问题,在分析SVM决策树分类器及存在问题的基础上,通过引入类间可分离性测度,并将其扩展到核空间,提出一种改进的SVM决策树分类器。实验表明了该分类算法对提高分类正确率的有效性。

    Abstract:

    For the multi-class classification with Support Vector Machines (SVMs), a decision tree architecture has been proposed for computational efficiency. But by SVM decision tree, the generalization ability depends on the tree structure. In this paper, to improve the generalization ability of SVM decision tree, a novel separability measure is defined based on the distribution of the training samples in the kernel space, and an improved SVM decision tree is provided. The theoretical analysis and experimental results show that this algorithm has higher generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

史朝辉,王晓丹,赵士敏,杨建勋.改进的SVM决策树分类算法[J].空军工程大学学报,2006,(2):32-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-24
  • 出版日期: