文章摘要
陈赓1, 田波1, 宫健1, 冯存前1,2.基于深度学习的DTMB外辐射源雷达参考信道估计[J].空军工程大学学报:自然科学版,2020,21(2):61-64
基于深度学习的DTMB外辐射源雷达参考信道估计
DTMB Passive Radar Reference Channel Estimation Based on Deep Learning
  
DOI:
中文关键词: 外辐射雷达  深度学习  DTMB信号  信道估计
英文关键词: passive radar  deep learning  DTMB signal  channel estimation
基金项目:国家自然科学基金(61601502);中国博士后基金(2019M662257)
作者单位
陈赓1, 田波1, 宫健1, 冯存前1,2 1.空军工程大学防空反导学院西安710051
2.信息感知技术协同创新中心西安710077 
摘要点击次数: 0
全文下载次数: 2
中文摘要:
      参考数据的纯度影响着地面数字广播多媒体(DTMB)外辐射源雷达的探测能力,而参考信道估计的精度是影响参考数据恢复的关键因素。针对此问题,文章将基于深度学习理论的信道估计方法引入外辐射源雷达参考信道估计过程。利用自回归模型对参考信道进行建模,并搭建参考信道估计网络。通过迭代训练后,估计得到参考信道响应。相比于传统算法,基于深度学习的参考信道估计精度得到有效提升,改善了雷达的探测性能。
英文摘要:
      The purity of reference data affects the detection capability of DTMB passive radar, and the accuracy of reference channel estimation is a key factor to affect the recovery of reference data. In view of this problem, the channel estimation method based on the deep learning theory is introduced into the passive radar reference channel estimation process. The reference channels are modeled by the autoregressive model and the reference channel estimation network is built. After iterative training, the reference channel response is estimated. Compared with the traditional algorithm, the estimation accuracy of reference channel based on deep learning is improved effectively, and the detection performance of radar is improved.
查看全文   查看/发表评论  下载PDF阅读器
关闭