[author_cn_name].[cn_title][J].空军工程大学学报:自然科学版,[year_id],[volume]([issue]):[start_page]-[end_page] 基于DBN特征提取的雷达辐射源个体识别-Radar Specific Emitter Identification Based on DBN Feature Extraction
Radar Specific Emitter Identification Based on DBN Feature Extraction
中文关键词: 辐射源个体识别  深度置信网络  包络前沿  特征提取
英文关键词: specific emitter identification  deep belief network  envelope frontier  feature extraction
徐宇恒1,程嗣怡1,董晓璇2,周一鹏1,董鹏宇1 1.空军工程大学航空工程学院西安7100382.空军工程大学航空机务士官学校河南信阳464000 
摘要点击次数: 87
全文下载次数: 111
      Aimed at the problem that the traditional characteristic parameters have difficulty in characterizing the specific characteristics of complex system radar signals, a specific emitter identification algorithm based on deep belief network feature extraction is proposed on account of the deep feature extracting and high dimensional data processing ability of deep belief network. Firstly, a DBN model based on multi layer restricted Boltzmann machine is established. Then, unsupervised extraction of pulse envelope frontier is realized via deep belief network. After that, the model parameters are fine tuned with label data in a supervised way to complete the training. Finally, the pulse envelope frontier features of the unknown source signals are input to realize the radar specific emitter identification. Compared with the traditional algorithm, the novel algorithm can adaptively extract from deep pulse features, and can also reduce the process of feature extraction to the dependence on human experiences. The experimental results show that the proposed algorithm provides satisfactory performance of pulse envelope feature extraction and higher recognition accuracy. The validity and application value of the algorithm are verified.
查看全文   查看/发表评论  下载PDF阅读器