锥柱体弹道目标遮挡效应分析

许旭光¹,冯存前^{1,2},陈 蓉¹,许 丹¹

(1. 空军工程大学防空反导学院,西安,710051;2. 信息感知技术协同创新中心,西安,710077)

摘要 针对锥柱体弹道目标观测过程中存在的遮挡效应,探究遮挡区与可视区分界线在弹道目标上的具体 位置,提出一种判断散射中心是否处于遮挡状态的方法。在窄带雷达观测的条件下,建立锥柱体弹道目标滑 动散射中心模型,分析各散射中心的微多普勒特性。通过对目标遮挡成因进行研究,分析遮挡区与可视区分 界线的具体位置,并提出一种判断散射中心是否处于遮挡状态的方法。仿真结果表明:理想散射中心与滑动 散射中心微多普勒存在一定差异,遮挡效应会导致微多普勒出现截断现象且不同观测视角下遮挡效应对散 射中心的影响不同。

关键词 窄带雷达;锥柱体目标;滑动散射中心;遮挡效应;截断现象

DOI 10. 3969/j. issn. 1009-3516. 2018. 03. 007

中图分类号 TN957 文献标志码 A 文章编号 1009-3516(2018)03-0036-06

Analysis on Shielding Effects of Cone-Cylinder Ballistic Target

XU Xuguang¹, FENG Cunqian^{1,2}, CHEN Rong¹, XU Dan¹

(1. Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China;

2. Collaborative Innovation Center of Information Sensing and Understanding, Xi'an 710077, China)

Abstract: Aimed at the problems that the shielding effects of cone-cylinder ballistic target exists in the process of observation, the concrete location of the boundary between the shielding area and the visible area can be made a thorough inquiry, and a novel algorithm is proposed to judge whether the scatter is shielded or not. First, a mathematic model of echo based on the observation in narrow-band radar is built. Then, a model of sliding scatters of the cone -cylinder ballistic target is built, and the characteristic of each scatter is analyzed. Finally, this paper looks into the causes of the shielding effects, analyzes the location of the boundary between the shielding area and the visible area, and proposes a novel algorithm to judge if the scatter is shielded. The simulation shows that the micro-Doppler curves of ideal scatters and sliding scaffers are different and shielding effects will result in the francation phenomenon of the micro-Doppler curves with the change of observation angles, which proves that the conclusion of this article is right and the algorithm is effective. And this provides a reference for the feature analysis of ballistic target being shielded.

Key words: narrow-band radar; cone-cylinder target; sliding scatter; shielding effects; truncation phenomenon

引用格式: 许起光,冯存前,陈蓉,等. 锥柱体弹道目标遮挡效应分析[J]. 空军工程大学学报(自然科学版), 2018, 19(3): 36-41. XU Xuguang,FENG Cunqian, CHEN Rong, et al. Analysis on Shielding Effects of Cone-Cylinder Ballistic Target[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(3): 36-41.

收稿日期: 2017-06-21

基金项目: 国家自然科学基金(61372166,61501495)

作者简介: 许旭光(1994—),男,陕西蓝田人,硕士生,主要从事雷达信号处理及电子战研究.E-mail:xuxuguanghjbsqsbs@163.com

中段防御是弹道导弹防御的重要阶段[1-3]。微 动作为中段弹道目标的一种典型运动特征,对于弹 道目标的特征提取与识别具有重要的研究意义。文 献[4]通过理论推导和数学分析,建立圆锥弹头的自 旋、锥旋、进动、章动模型,并通过仿真验证其微多普 勒特性;文献「5]建立旋转对称目标滑动散射模型, 并基于暗室测量分析滑动散射中心与理想散射中心 的模型差异;文献[6]在不考虑遮挡效应的前提下, 针对2个对称散射中心微多普勒之间的数字关系, 采用振幅和差比的方法实现了散射中心的匹配关 联;文献[7]结合仿真与暗室测量数据,研究遮挡效 应对弹道目标进动微多普勒的影响;文献[8]将弹道 目标投影到二维平面,将2个散射点之间的连线作 为散射中心可视与被遮挡分界线,进而实现对散射 点是否处于遮挡状态的判定;文献「9]采用3部雷达 同一时刻观测到的散射中心一维距离像信息,实现 了弹道目标的特征提取。上述文献都没有考虑遮挡 效应的存在,而在实际观测中,散射点的遮挡是普遍 存在的,上述文献中的特征提取方法受到很大挑战。

本文以锥柱结构弹道目标为研究对象,通过对 理想条件下窄带雷达获取的回波进行时频分析,比 较理想散射中心与滑动散射中心微多普勒曲线之间 的差异性。仿真实验验证了不同视角下各散射点微 多普勒曲线呈现出的截断、缺失现象,为进一步探究 遮挡条件下弹道目标相关特性打下基础。

1 窄带回波模型

V.C.Chen 指出, 雷达获得的微多普勒特性与 距离分辨力无直接约束关系^[10], 通过对窄带雷达进 行优化, 同样可以呈现目标的微多普勒信息^[11]。考 虑上述原因, 文章主要对窄带雷达回波模型进行 分析。

设雷达发射单频脉冲信号 s(t),信号表示为:

$$s(t) = \sum_{i} \operatorname{rect}(\frac{t - iT_{r}}{\tau})\cos(2\pi f_{0}t) \qquad (1)$$

式中: T_r 为脉冲重复周期; f_0 为载波频率; τ 为脉冲 宽度;i为脉冲序号。

$$\operatorname{rect}(\frac{t-iT_r}{\tau}) = \begin{cases} 1, |t-iT_r| < \tau \\ 0, |t-iT_r| > \tau \end{cases}$$
(2)

假设雷达工作在高频区,目标回波可等效为几 个强散射点的回波之和^[9]。假定平动已补偿,通过 对目标回波进行正交双通道处理,得到基带回波 *s*_r(*t*)表示为:

$$s_r(t) = \sum_n \sigma_m \exp\left[j \frac{4\pi f_0}{c} R_m(t)\right]$$
(3)

式中:n为散射中心的个数; om 为第 m 个散射中心

的散射系数; c 为光速; $R_m(t)$ 为第 m 个散射中心的 微距离。

目标的微多普勒 f_d 表达式为:

$$f_d = \bigcup_n \frac{2f_0}{c} \frac{\mathrm{d}R_m(t)}{\mathrm{d}t} \tag{4}$$

式中: U表示所有散射点微多普勒之和。由式(4) 知,不同的微动模式会对微多普勒产生不同的调制。 通过对回波微多普勒特性的分析,可以实现对目标 的特征提取及识别。

2 基于滑动散射中心的弹道目标进动 模型

基于理想散射中心的研究认为弹道目标进动引 起的微多普勒为标准正弦形式,这种研究未考虑到 弹体与散射中心运动的不一致性。基于此,文献 [12]提出滑动散射中心理论,这类散射中心位于入 射面与目标不连续边缘的交点,在弹体微动过程中, 这些散射中心只是在弹体边缘滑动。

建立锥柱结构弹道进动模型如图 1。其中,锥顶 P₁为理想散射中心,运动规律同弹体一致,其他 4 个散射中心为滑动散射中心。考虑到弹道目标为 旋转对称结构,自旋对回波微多普勒的影响未在回 波中体现,所以仅考虑锥旋对微多普勒的调制。

图 1 锥柱结构弹道目标进动模型

Fig. 1 The model of processing of cone -cylinder ballistic target

如图 1 所示,将弹体对称轴与锥旋轴交点作为原 点 O,锥旋轴为 Z 轴,建立坐标系(X,Y,Z),雷达视线 在坐标系中的方位角为 α ,雷达视线与锥旋轴夹角为 β ,弹体对称轴与弹道目标锥旋轴夹角为 θ (进动角), OP_2 与 Z 轴夹角为 γ_1 , OP_4 与 Z 轴夹角为 γ_2 , OP_1 与 P_1P_3 夹角(弹体半锥角)为 v_o 记 OP_1 长度为 L_1 , OP_2 长度为 L_2 , OP_4 长度为 L_4 ,OO' 长度为 h_1 ,OO' 长 度为 h_2 , $O'P_1$ 长度为 h_3 ,圆柱半径长度为 R_o

雷达视线的单位方向向量:

 $\boldsymbol{\eta} = [\cos\alpha \sin\beta, \sin\alpha \sin\beta, \cos\beta]$ (5) 假设 t=0 时刻,弹体对称轴处于 YOZ 平面,方 向指向 Z 轴负半轴,此时弹道目标对称轴的单位方向向量可以表示为:

$$\boldsymbol{e} = \begin{bmatrix} 0, -\sin\theta, \cos\theta \end{bmatrix} \tag{6}$$

设弹道目标锥旋角频率为ω_c,则 *t* 时刻弹体对 称轴的单位方向向量表示为:

$$\boldsymbol{e}_{\boldsymbol{d}} = \begin{bmatrix} \sin\theta \sin(\boldsymbol{\omega}_{c}t), -\sin\theta \cos(\boldsymbol{\omega}_{c}t), \cos\theta \end{bmatrix} \quad (7)$$

假设 t 时刻雷达视线与对称轴夹角(弹体姿态角)为 ϕ_t ,则有:

$$\cos(\phi_t) = \cos\beta\cos\theta + \sin\beta\sin\theta\sin(\omega_c t - \alpha) \quad (8)$$

由式(8)中 cos(ϕ_t)的表达式中可以看出, ϕ_t 在 某个范围内呈周期性变化,变化周期由锥旋频率决 定,变化范围由初始时刻雷达视线方向和进动角 θ 共同决定。

根据散射点在弹道目标中的几何分布,可以得 出散射点的微距离表达式为:

$$\begin{cases} R_{P_{1}} = L_{1} \cos \psi_{t} \\ R_{P_{2}/P_{3}} = L_{2} \cos(\psi_{1} \pm \gamma_{2}) \\ R_{P_{4}/P_{5}} = L_{4} \cos(\pi - \psi_{t} \pm \gamma_{2}) \end{cases}$$
(9)

由式(9)推导得到各散射点的微多普勒表达式为:

$$\begin{cases} f_{d_{P_1}} = \Gamma L_1 \cos(\omega_c t) \\ f_{d_{P_2/P_3}} = \Gamma L_2 [\cos \gamma_2 \mp \sin(\gamma_2) \chi] \Delta \\ f_{d_{P_4/P_5}} = \Gamma L_4 [\cos \gamma_1 \mp \sin(\gamma_1) \chi] \Delta \end{cases}$$
(10)

式中:

$$\begin{cases} \Gamma = 2\omega_c \sin\theta \sin\beta/\lambda \\ \chi = \cos\phi_t/\sqrt{1 - \cos^2\phi_t} \\ \Delta = \cos(\omega_c t - \alpha) \end{cases}$$
(11)

由式(10)可知,除锥顶 P₁的微多普勒表达式 呈标准的正弦函数外,其余 4 个散射点的微多普勒 表达式不具有标准正弦特性,说明将滑动散射中心 等效为理想散射中心的方法具有一定的局限性。从 式(10)中还可以看出,各散射点的微多普勒与弹道 目标几何尺寸、观测视角等因素有关。

3 锥柱结构弹道目标遮挡效应分析

弹道目标运动过程中伴随着弹体姿态角的变化,当姿态角与弹体半锥角满足相应的数学关系时, 会产生遮挡效应。已有研究表明目标的遮挡面积可达 60%以上^[13],这对弹道目标的特征提取和三维重 构具有较大影响。

在远场情况下,雷达波近似为平面波,对散射点 近似平行照射^[14]。因此,弹道目标遮挡区域与照亮 区域的分界线在雷达视线与弹体所形成的截面中与 雷达视线方向垂直的最长轴处。考虑到微动具有周 期性,不同角度下形成的遮挡效应具有对称性,这里 仅分析 $π/2 < φ_i < π$ 的情况,其他情况下具有对称 性,这里不做具体阐述。

3.1 弹道目标遮挡效应状态分析

状态 1:当 $\pi - v < \phi_t < \pi$ 时,建立弹道目标遮挡 效应模型见图 2,以弹体对称轴为 Z 轴,取锥底垂直 入射方向为 X 轴,右手定则确定 Y 轴,锥顶散射点 为 P_1 点,雷达视线方向为图中 LOS 方向。

图 2 遮挡效应分析(状态 1)

Fig. 2 The analysis of shielding effects(state 1)

当电磁波在 LOS_1 位置入射时,切面最长轴显 然在截面与锥柱圆的交线上,这种情况下将弧线 P_5CB 作为遮挡区域分界线;当电磁波沿 LOS_2 位 置时,截面中垂直于雷达视线的最长线段位于圆柱 的竖截面 EFCB 中,将 EF 和 CB 作为遮挡区域分 界线,当电磁波沿 LOS_3 照射目标时,分界线为弧线 P_2EF 。因此,对于状态 1 的遮挡分界线是固定的。

状态 2:当 $\pi/2 < \phi_t < \pi - v$ 时,建立弹道目标遮 挡效应模型如图 3(a),坐标系建立情况同图 2。

显然当电磁波沿着 LOS₁和 LOS₂方向入射时,弹体遮挡分界线与状态1相同。当雷达视线位于 LOS₃情况时,情况较为复杂,具体分析如下:

取 P_1P_3 上一点 M,设雷达从点 M 处照射目标,与目标形成截面 P_2HGM ,经过数学分析知该截面为椭圆截面,HG 为椭圆短轴,与雷达视线交于 I 点,分别延长 P_1H 、 P_1G 、 P_1I ,与圆柱上表面交于 J、L、K 点,设 $\angle KP_1O' = \Upsilon$,为进一步分析遮挡分界线具体位置,建立弹到目标平面图如图 3(b) 所示:

由正弦定理得:

$$\frac{P_2 O' P_1 O' \tan \Upsilon}{\sin(\phi_t + \Upsilon)} = \frac{IK}{\sin(\phi_t - 90^\circ)}$$
(12)

根据三角形相似性, $\triangle P_1 JL \sim \triangle P_1 HG$, 因此有:

$$\frac{P_1I}{P_1K} = \frac{HG}{JL} \tag{13}$$

式中: $P_{K} = P_{1}I + IK, JL = 2KL = 2\sqrt{LO''^{2} - KO''^{2}},$ $KO'' = P_{1}O'' \tan \Upsilon$ 。联立式(12)和式(13),得:

$$HG = \left[1 + \frac{(R - h_3 \tan \mathbf{\Upsilon}) \cos \mathbf{\Upsilon} \cos \psi_t}{h_3 \sin(\psi_t + \mathbf{\Upsilon})} \right] \cdot 2\sqrt{R^2 - [h_3 \tan \mathbf{\Upsilon}]^2} \quad (0 < \mathbf{\Upsilon} < v)$$
(14)

对于任意确定的 φ_i ,通过对于 Υ 的搜索,使得 HG 长度最大,进而可以确定该 φ_i 下弹道目标的遮 挡区与照亮区的分界线。

3.2 判断弹道目标遮挡效应方法

考虑到遮挡效应是由雷达视线与弹体对称轴夹 角的不一致性造成的,而在式(8)中已经表明该夹角 呈周期性变化。因此,当考虑遮挡效应时,散射中心 的微多普勒可以表示为:

$$f_{m-d} = f_{m-d}u(t) \tag{15}$$

式中:

$$u(t) = \begin{cases} 1, 散射点未被遮挡\\ 0, 散射点被遮挡 \end{cases}$$
(16)

式中:u(t)为周期调制信号,调制周期由弹道目标锥 旋频率和雷达共同决定。

分析发现:当 ϕ_t 分别处于 $[0 \pi/2-v]$ 、 $[\pi/2-v]$ 、 $[\pi/2-v]$ 、 $[\pi/2-v]$ 、 $[\pi-v]$ 、 $[\pi/2-v]$ 、 $[\pi/2-v]$ 、 $[\pi-v]$ 、 $[\pi-v]$ 、 π]时,未被遮挡的 散射点个数分别为 3、4、3、4,与回波时频图上的微 多普勒曲线条数相对应。目标方位角和高低角可由 雷达直接测定,进而可以确定雷达视线和锥旋轴 β 的大小;文献[15]指出 ϕ_t 的变化范围为 $[|\beta-\theta| \beta + \theta]$,而目标的进动角一般较小,通常为 5~10°^[7]。 因此,可以通过对任意时刻回波时频图上时频曲线 的个数进行初步判断,排除 2 种状况,然后根据平均 视界角的大小,判断 ϕ_t 在该时刻与 $\pi/2$ 的大小关 系,进而确定该时刻处于何种遮挡状态。

结合文献[16]中对圆锥弹头遮挡区域分界线的 求解方法,综合上文中2种遮挡情况,提出判断弹道 目标任意一点是否处于遮挡情况的算法步骤如下:

步骤1 结合回波时频曲线个数与平均视界 角,判断遮挡类型;若目标处于状态1,则直接跳转 **步骤4**;若目标处于状态2,则执行**步骤2**;

步骤 2 结合式(15),通过对 HG 最大长度的 搜索,确定角度 **7** 的大小;

步骤3 根据**步骤2**中确定的 HG 的大小,延 长 P₁H、P₁L,最终形成分界线 P₁JL;结合 LOS₁ 和 LOS₂ 对应分界线,最终形成状态2下目标的遮挡 区与可视区的分界线;

步骤4 根据任意一点在弹道目标中的位置,结合判决标准,判定弹道目标各散射中心遮挡情况。

文献[17]对散射中心进行二维投影,将锥顶散 射中心 P₁和 2个底面散射中心 P₄和 P₅其中之一 的连线作为遮挡区域与可视区的分界线,该方法能 够判定散射中心是否处于遮挡状态,且方法比较简 单。然而,该方法对于遮挡区域可视区的分界线划 分较为粗糙,与弹体实际分界线还存在一定差距。 本文提出判定方法虽然相对复杂,但是对于遮挡状 态的划分更加具体,对于遮挡区与可视区在弹体上 的位置划分更加准确,而且由于本文提出的方法属 于三维立体分析,对于带有尾翼、凹槽的弹道目标遮 挡效应分析也具有一定的参考意义。

4 仿真分析

假设雷达为窄带雷达,发射单载频脉冲信号,载 频为 f_0 =14 GHz,脉冲重复频率为 f_r =2 000 Hz, 积累时间为 T=1 s。目标为锥柱结构弹道目标,锥 顶到坐标中心距离 L_1 =1.5 m,坐标中心距离底面 圆心 h_1 =1 m,坐标中心距离锥柱上表面 h_2 =0.5 m, γ_1 =45°, γ_2 =26.56°,弹头底面半径 R=0.5 m, 文中假设 P_1 、 P_2 、 P_3 、 P_4 、 P_5 各散射点散射系数 σ_1 之比为 3:2:2:1:1,弹道目标锥旋角频率 ω_c = 2π rad/s,进动角 θ =10°,信噪比取 10 dB。

前文中分析,锥柱结构有5个散射点,理想情况 假设5个散射点皆可见,其时频图见图4。可以看出, 滑动散射中心其微多普勒呈非正弦性,验证文中关于 滑动散射中心微多普勒的理论分析。

考虑到 $0 < \beta < 180^{\circ} \le 180^{\circ} < \beta < 360^{\circ} \ge 2$ 种情况下,遮挡效应对散射点的影响具有对称性,因此本 文仅考虑 $0 < \beta < 180^{\circ}$ 时各散射点是否处于遮挡状态,见图 5。

图 4 理想情况下时频图

200

400

图 5 不同观测视角下目标实际时频图

The time-frequency graph in the actual case in Fig. 5 different perspectives

当 $\beta=25$ °时,散射中心 P_3 处于被遮挡状态,散射中 心 P1 由于遮挡会使得部分多普勒曲线出现截断现象。

当 $\beta=70^{\circ}$ 时,散射中心 P_3 处于被遮挡状态,其 他4个散射中心均可见。

当 $\beta = 90^{\circ}$ 时,散射点 P_3 不可见, P_5 部分时间可 见。而此时时频图中只有3条曲线,仿真分析后发 现 P_4 和 P_5 时频曲线重合,反映在时频图中为某一 条时频曲线在部分时间段内出现亮点。

当 $\beta=155°$ 时,散射点 P_5 不可见, P_3 部分时间 可见。

定义遮挡率 ξ:

$$\boldsymbol{\xi} = \frac{\tau}{T} \tag{18}$$

式中:r为散射中心不可见时间;T为积累时间。

经过分析后发现,散射点 P2 和 P4 在观测时间 内一直处于可见状态。因此这里只对其他3个散射 点遮挡率进行计算。

通过对遮挡率的定义,可以实现对遮挡效果的 定量描述。从图 6 中可以更为清晰直观的反映出各 散射点在不同雷达视线与锥旋轴初始夹角下的遮挡 情况。

根据不同 β下弹道目标微动回波的微多普勒时 频曲线,可以看出不同角度下各散射中心的遮挡情 况,这与采用本文遮挡方法后得出的散射中心遮挡 情况是一致的,从而说明该方法的有效性。

图 6 各散射点遮挡率与雷达视线和锥旋轴夹角关系

Fig. 6 The relationship between shielding rate and the angle between the conning shaft and the line of light of radar

5 结语

本文通过建立锥柱弹道目标滑动散射模型,分 析其微多普勒的非理想散射特性;通过对遮挡成因 分析,确定遮挡分界线在弹体的具体位置,提出对应 的判遮挡的方法,仿真实验验证遮挡的真实存在和 文中判遮挡方法的有效性。由于本文是基于旋转对 称结构弹道目标进行观测,后续的研究将考虑更复 杂的弹道目标结构,以及在遮挡情况下如何有效的 实现弹道目标特征提取和识别。

参考文献(References):

- VICTORIA S, American Missile Defense [M]. California: Praeger Security International, 2010: 44-78.
- [2] YE C M,XU J,PENG Y N, et al. Key Parameter Estimation for Radar Rotating Object Imaging with Multi-aspect Observations[J]. Science China (Information Sciences), 2010, 53(8):1641-1652.
- [3] WANG J.LEI P.SUN J P. et al. Spectral Characteristic of Mixed Micro-Doppler Time-Frequency Data Sequences in Micro-Motion and Inertial Parameter Estimation of Radar Targets[J]. IET Radar, Sonar & Navigation, 2014,8(4):275-281.
- [4] 孙照强,李宝柱,鲁耀兵. 弹道中段进动目标的微多 普勒研究[J]. 系统工程与电子技术, 2009, 31(3): 538-561.

SUN Z Q, LI B Z, LU Y B. Research on Micro-Doppler of Ballistic Midcourse Target with Precession [J]. Systems Engineering and Electronics, 2009,31 (3)::538-561. (in Chinese)

 [5] 马梁,刘进,王涛,等.旋转对称目标滑动型散射中 心的微 Doppler 特性[J].中国科学(信息科学), 2011,41(5):605-616.

> MA L, LIU J, WANG T, et al. Micro-Doppler Characteristics of the Sliding Scattering of the Rotationally Symmetric Target[J]. Scientia Sinica Informationis, 2011,41 (5):605-616. (in Chinese).

- [6] 赵双,鲁卫红,冯存前,等.基于宽窄带雷达微多普勒 信息的进动目标特征提取[J].北京航空航天大学学 报,2016,42(10):2250-2257.
 ZHAO S, LU W H, FENG C Q, et al. Feature Extraction of Precession Targets Based on Wideband and Narrowband Micro-Doppler Information[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(10):2250-2257. (in Chinese)
 [7] 姚汉英,李星星,孙文峰等.弹道中段带翼弹头章动微
- 多普勒特性研究[J].现代雷达,2015,37(2):69-74. YAO H Y, LI X X, SUN W F, et al. Micro-Doppler Characteristics of Nutation for Warhead with Wings in Ballistic Midcourse[J]. Modern Radar, 2015, 37 (2):69-74. (in Chinese)
- [8] 徐少坤,刘记红,付耀文,等. 弹道中段微动目标宽带回波模拟[J]. 宇航学报,2012,33(3):339-345.
 XUSK,LIUJH,FUYW,et al. Wideband Radar Echo Simulation of Micro-Motion Targets in Ballistic Midcourse [J]. Journal of Astronautics, 2012, 33 (3): 339-345. (in Chinese)

- [9] 雷腾,刘进忙,杨少春,等.基于三站一维距离像融合的弹道目标特征提取方法研究[J]. 宇航学报,2012, 33(2):228-234.
 LEI T, LIU J M, YANG S C, et al. Study on Feature Extraction Method of Ballistic Target Based on Three-station Range Profiles[J]. Journal of Astro-
- nautics, 2012, 33(2): 228-234. (in Chinese) [10] CHEN V C. Micro-Doppler Effect in Radar [M]. [S. l.]: Artech House, 2011.
- [11] CHEN V C. Advances in Applications of Radar Micro-Doppler Signatures[C] // Proceedings of IEE Antenna Measurements & Application, 2014: 1-4.
- [12] GAO H W, XIE L G, WEN S L, et al. Micro-Doppler Signature Extraction from Ballistic Target with Micro-Motions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46 (4): 1969-1982.
- [13] 关永胜.空间锥体目标微动特性与识别方法研究
 [D].西安:西安电子科技大学,2011.
 GUAN Y S. Study on Micro-Motion Characteristic and Recogniton of Space Cone-Shaped Targets[D].
 Xi'an: Xidian University, 2011. (in Chinese)
- [14] 李开明,张群,梁必帅,等.卡车目标遮挡效应建模及 多普勒特征分析[J].电子与信息学报,2013,35(9): 2114-2120.

LI K M, ZHANG Q, LIANG B S, et al. Occlusion Modeling and Micro-Doppler Characteristic Analysis for Truck Target[J]. Journal of Electronics & Information Technology, 2013, 35 (9): 2114-2120. (in Chinese)

- [15] CHEN H Y, JIANG W D, LIU Y X, et al. Nonuniform Stretch Progressing for Range Profile of Target with Micro-motion [J]. Progress in Nature Science, 2006,16(11):1205-1213. (in Chinese)
- [16] LIU L H,DU X Y, Mounir Ghogho, et al. Precession Missile Feature Extraction Using the Sparse Component Analysis Based on Radar Measurement [J]. EURASIP Journal on Advances in Signal Processing, 2012,24:1-10.
- [17] 姚辉伟,魏玺章,徐少坤,等. 弹道中段进动目标非理想散射中心微动特性分析[J]. 电子学报,2012,40 (9):1844-1851.

YAO H W, WEI X Z, XU S K, et al. Micro-Motion Characteristic of Nonideal Scattering Centers of Midcourse Target with Precession [J]. Acta Electronica Sinica,2012,40(9):1844-1851. (in Chinese)

(编辑:徐敏)