8 状态 8PSK TCM 在多径衰落信道中的应用

赵 燃, 王兴亮, 王永明(空军工程大学 电讯工程学院, 陕西 西安 710077)

摘 要:介绍了网格编码调制(TCM-Trellis Coded Modulation)的基本原理,提出了采用(3,2,3)卷积码与8PSK结合构成8状态8PSK网格编码调制的方案,并对其在多径衰落移动信道中应用的性能进行了分析,推证了8状态8PSK网格编码调制对信道性能的改善。

关键词:网格编码调制;多径衰落信道; Viterbi 译码

中图分类号:TN911 文献标识码:A 文章编号:1009-3516(2003)05-0024-04

在移动通信系统中,无线信道存在的频率选择性衰落、多径衰落、快慢衰落等问题,严重影响通信质量。为了克服这些问题,需要采取一定的纠错编码方案。纠错编码技术都是以冗余度为基础,或使传信率降低,或使信道带宽增加,或使信号能量变大。如果增加码长,则处理设备会变得复杂、昂贵。因此,只有对纠错编译码和调制解调方案的合理设计,综合考虑频谱效率、带宽限制与传信率等因素,才能在带宽有线信道中达到高编码增益的要求。

网格编码调制(TCM)技术一般采用卷积编码与调相结合,利用状态记忆和分级映射来增大码序列间的 距离,编码后的信号送人调相系统直接参与选相。TCM 将编码序列的最小欧氏距离作为调制设计的量度, 这就使得对信号集空间的最佳分割成为可能,这也是 TCM 技术的关键所在。

1 8 状态 8PSK 网格编码调制方案

1.1 网络编码调制的基本方法

网格编码调制一般由 2 个部分组成:卷积编码器和分集映射。有时为了防止收端发生相位混淆还需加上差分编码器。网格编码调制的原理如图 1 所示。

通常情况下,在每次编码调制时间间隔内,输入 n bit 信息(二进制),其中 k(k < n) bit 送人卷积编码器。卷积编码器将输入的 k bit 编码到 k+1 bit,与未参与编码的 n-k bit 同时送入分集映射器。分集映射的作用就是将 k+1 bit 的 2^{k+1} 中组合——对应到 2^{k+1} 点信号集(也称为星座 Constellation),卷积编码得到的 k+1 bit 用以选择子集,剩下的 n-k bit 则用以选择子集中的信号点。这种信号的分集映射是基于集分割原理的。所谓"集分割"就是采用"二叉树"搜索,

图 1 TCM 原理框图

即每一次分割都是把1个较大的调制信号集一分为二,使得各子集中信号点间的最小欧氏距离逐渐增大。信号点集的分割应满足以下原则:①在同一子集中,每个子集所包含的信号点数及空间距离应当保持相等;

收稿日期:2002-12-06

基金项目:军队科研基金资助项目

作者简介:赵 燃(1979-),男,北京市人,硕士生,主要从事通信电路新技术研究; 王兴亮(1957-),男,陕西渭南人,教授,主要从事通信电路新技术研究.

②信号点的空间距离是随着集分割而逐级增大的。

事实上在 TCM 中码字与星座点的对应关系与传统的调相是有区别的,它要遵循 2 个原则:①必要时采用差分编码。如存在 180°相位混淆需 1 位差分编码,如存在 90°、180°、270°相位混淆则需两位差分编码;② 未差分编码的码元要选择使得不受相位混淆的影响,即相位混淆时其值不变。

1.2 Viterbi 译码

TCM 译码采用的是基于软判决的 Viterbi 译码。Viterbi 译码是建立在最大似然估计基础上的译码方法。最大似然译码算法的基本思路是把接收码字与所有可能的码字比较,选择一种码距最小的码字作为解码输出。由于接收序列通常很长,所以 Viterbi 译码对最大似然译码作了简化,即它把接收码字分段累计处理,每接收 1 段码字,计算、比较 1 次,保留码距最小的路径,直到译完整个序列。由于 TCM 采用的是软判决,所以这里的距离是欧氏距离。最可能的错误发生在具有最小平方欧氏距离的 2 个序列 $\{a_n\}$ 和 $\{b_n\}$ 之间(前者是发送序列,后者是译码序列),最小平方欧氏距离又称为平方自由距离,记为 d_{rec}^2 ,即

$$d_{\text{free}}^2 = \min \sum |a_n - b_n|^2 \qquad |a_n| \setminus |b_n| \in C, a_n \neq b_n$$

1.3 8 状态 8PSK 网格编码调制方案

在网格编码调制中,卷积编码器的结构对系统的性能有影响。随着编码器的复杂度的不同,会使 TCM 具有 4 状态,8 状态,16 状态等,状态数与编码器中的寄存器数目有很大的关系,随着状态数的增加,系统会得到更大的编码增益,当然设备复杂程度也会随之提高。

本文提出的 8 状态 8PSK 网格编码调制采用(3,2,3)卷积码对 8PSK 信号空间的映射构成 TCM 纠错方案,调制器框图如图 2 所示。

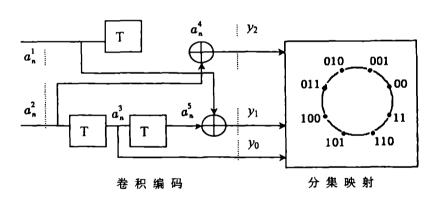


图 2 8 状态 8PSK 网格编码调制器

根据编码器的构造可推导出编码器的状态转移和输出码字的规律

状态转移方程。

$$egin{cases} a_{n+1}^4 = a_n^2 \ a_{n+1}^3 = a_n^1 \ a_{n+1}^5 = a_n^3 \end{cases} egin{cases} y_2 = a_n^1 + a_n^4 \ y_1 = a_n^2 + a_n^5 \end{cases}$$
 状态转移过程如表 1 所示。 $y_0 = a_n^3 \end{cases}$

表 1 状态转移表

$a_n^4 a_n^3 a_n^5$	$a_n^2 a_n^1$	$y_2y_1y_0$	$a_n^2 a_n^1$	$y_2 y_1 y_0$	$a_n^2 a_n^1$	y ₂ y ₁ y ₀	$a_n^2 a_n^1$	y ₂ y ₁ y ₀
000	000	000	010	100	100	010	110	110
001	000	010	010	110	100	000	110	100
010	001	001	011	101	101	011	111	111
011	001	011	011	111	101	001	111	101
100	000	100	010	000	100	110	110	010
101	000	110	010	010	100	100	110	000
110	001	101	011	001	101	111	111	011
111	001	111_	011	011	101	101	111	001

从表中可以看到,卷积编码器状态转移是有一定的规律的,可以发现编码器的初始态 010、011、101、111 都是对应于 001、011、101、111 这 4 种转移状态,而 000、001、100、101 这 4 种初始态都是对应于 000、010、

100、110 这 4 种转移态; 这 2 个转移状态集分别对应于 8PSK 信号集分隔的第一级中的 2 个信号子集。其状态转移如图 3 所示。

在功率一定的条件下,总是欧氏距离越大差错概率越小,但由于并 行转移的存在限制了欧氏距离的范围。每一种状态转移到另一种状态的 过程中只有1条路径,这就避免了出现并行转移。

2 移动信道模型

移动信道的一大特点是多径性,它是导致信道小尺度衰落产生的主要原因。在移动通信中,由于信道中反射及反射物的存在,构成了一个不断消耗信号能量的环境,导致信号幅度、相位及时间的变化。这些因素使发射波到达接收机是形成在时间、空间上相互区别的多个无线电波。不同多径成分具有的随机相位和幅度引起的信号强度波动,随之导致了信号的衰落、失真、码间串扰,相位混淆等有害现象。

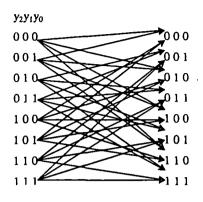


图 3 8 状态 8PSK TCM 网格图

目前已经建立了许多多径模型,用以说明移动信道的观测统计特性。Clarke 模型和 Rayleigh 衰落统计模型,适用于平坦衰落条件而不考虑多径时延。在现代高速移动通信系统中,需要为多径时延扩展及衰落效应建模,常用的是 Rayleigh 双线模型,如图 4 所示。该模型的冲击响应表示为

 $h_b(t) = \alpha_1 \exp(j\varphi_1)\delta(t) + \alpha_2 \exp(j\varphi_2)\delta(t-\tau)$ 其中 α_1 和 α_2 服从 Rayleigh 分布, φ_1 和 φ_2 相互独立且服从 $[0,2\pi]$ 的均与分布, τ 是双线时延。通过改变 τ 可以产生大范围的频率选择性衰落。利用谱的傅里叶反变换可以产生 2 个独立的波形,用以保证 Rayleigh 随机变量 α_1 和 α_2 适当的相关性。

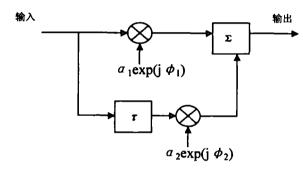


图 4 双线 Rayleigh 衰落模型

3 性能分析

这里主要将 8 状态 8PSK TCM、4 状态 8PSK TCM 与 4PSK 和 8PSK 在同样信道条件下的误码性能作—比较。

根据前面的分析,可以对 TCM 在移动通信系统中的性能做出仿真。信号经过双线 Rayleigh 衰落信道模型后的仿真结果如图 5、图 6 所示。

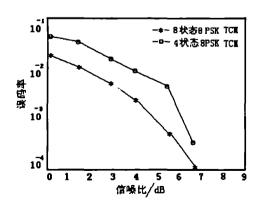


图 5 4 状态与 8 状态 8PSK 误码性能比较

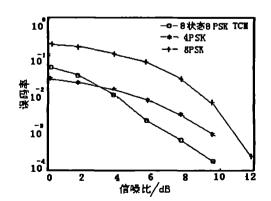


图 6 8 状态 8PSK TCM 与 4PSK、8PSK 误码性能比较

图 5 是 4 状态 8PSK 网格编码调制与 8 状态 8PSK 网格编码调制误码性能的比较结果,与前面论述的结论是一致的,8 状态 8PSK TCM 的性能明显优于 4 状态 8PSK TCM,从理论上来讲,4 状态时最大可取得 3 dB编码增益,而 8 状态时最大可取得 3.97 dB编码增益,状态数越多,就可以取得越高的编码增益,当然还要考

虑设备的复杂度。

图 6 是 8 状态 8PSK TCM 与传统的调制方式 4PSK、8PSK 的误码性能比较。在信噪比一定的条件下,8 状态 8PSK TCM 能取得比另外 2 种调制方式低得多的误码率,最大可以取得接近 1 个数量级的优势。

从分析结果可以看出,8 状态 8PSK 网格编码调制与 4 状态 8PSK 网格编码调制相比具有更高的编码增益,能更好地改善信号对信道的适应性,而相对更高状态数的调制方案又不失设备的简洁性,低成本。

分析结果证明,在移动通信的多径衰落信道下,8 状态 8PSK TCM 较 4 状态时有更好抗干扰性,更高的编码增益,更低的误码率。当然,还可以采取更高状态数的方案,但要综合考虑系统的性能和设备的复杂度。目前,TCM 技术正逐步应用于移动通信、卫星、深空、微波等领域。

参考文献:

- [1] 林家薇,王兴亮,杜思深,等. 军事通信技术基础[M]. 西安:西安电子科技大学出版社,2001.
- [2] 宋祖顺. 现代通信原理[M]. 北京:电子工业出版社,2001.
- [3] Theodore S Rapaport. 无线通信原理与应用[M]. 蔡 涛,李 旭,杜振民. 北京: 电子工业出版社,2001.
- [4] 袁东风,罗济军. 网格编码调制在快衰落移动信道中的应用[J]. 通信技术,1999,(2):66-70.
- [5] 袁东风,罗济军,随爱芬 . 网格编码调制在图像同步系统中的应用[J]. 山东大学学报 , 2001, (2) 195 199.
- [6] Quinn Li, Bixio Rimoldi, Marvin K. Bandwidth Efficient Constant Energy Trellis Coded Modulation Schemes With Prescribed Decoding Delay [J]. IEEE Transactions On Information Theory, 2002, 48:1150 1159.
- [7] 杜兴民,蒋旭宇. 网络编码调制在数字通信中的应用[J]. 空军工程大学学报(自然科学版),2003,4(1);43 45.
- [8] Wei L F. Trellis coded modulation with multidimension al constellations [J]. IEEE Transac Tions On Information Theory, 1987, 33(4): 483 501.
- [9] Ungerboeck G. Channel Coding with Multilevel / phase Signals[J]. Transac Tions on Information Theory, 1982, 28:55 67.
- [10] Ungerboeck G. Trellis coded modulation with redundant signal sets part I: Introduction [J]. IEEE Communications Magazine, 1987,25(2): 5 11.

(编辑:门向生)

An Application of 8 States 8PSK Trellis Coded Modulation to Multi – diameter Fading Channel

ZHAO Ran, WANG Xing - liang, WANG Yong - ming

(The Communication Engineering Institute, Air Force Engineering University, Xi'an, Shaanxi 710077, China)

Abstract: This paper introduces the principle of Trellis Coded Modulation and the key technique, presents a TCM case of convoluted code word combined together with 8 states 8PSK, analyzes the capability of this system under the conditions of multi – diameter fading channel and proves the improvement made by 8 states 8PSK TCM on the performance of mobile channel.

Key words: trellis coded modulation; multi - diameter fading channel; Viterbi decoding