欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于小波包分解的LFM 雷达抗间歇采样转发干扰方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN974

基金项目:

国家自然科学基金(62301598,62471484);陕西省自然科学基础研究计划(2025JC-YBQN-868);陕西省教育厅青年创新团队科研计划(24JP221)


Wavelet Packet Decomposition-Based Anti-ISRJ Method for LFM Radar
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对间歇采样转发干扰(ISRJ)极大影响线性调频雷达目标检测性能的问题,提出了一种基于小波包分解的新型抗干扰方法。通过挖掘雷达信号的波形先验信息,创新性地构建了基于信号不变性特征提取的干扰抑制框架,从而突破了传统“干扰参数估计+干扰抑制”策略易导致目标信息丢失的局限性。实验结果表明,该方法在低干信比、高干扰目标重叠率、复合干扰情况下,比传统时域及时频域方法能更有效地保留目标信息,目标信息损失小于1.67%,显著提高目标检测的精度。文中所提方法在复杂干扰环境下具有较好的鲁棒性和目标检测性能,能够有效应对ISRJ带来的干扰问题,具有较大的应用潜力。

    Abstract:

    This study addresses the significant impact of interrupted-sampling repeater jamming (ISRJ) on linear frequency modulated radar target detection performance by introducing a novel anti-jamming technique grounded in wavelet packet decomposition. The proposed method innovatively constructs a jamming suppression framework based on invariant feature extraction, leveraging waveform prior information of radar signals. This approach overcomes the limitations associated with traditional strategies centered around “jamming parameter estimation + jamming suppression”, which are prone to loss of target information. Experimental results indicate that the method demonstrates superior capability in preserving target information under conditions of low jamming-to-signal ratio, high overlap of jamming and target signals, and complex jamming scenarios, outperforming conventional time-domain and time-frequency domain methods by achieving target information loss of less than 1.67%. The method significantly enhances target detection accuracy, showing robust performance in complex jamming environments and effectively mitigating ISRJ-induced jamming, thus exhibiting substantial application potential.

    参考文献
    相似文献
    引证文献
引用本文

张 钰, 郭艺夺, 张秋月, 冯存前.基于小波包分解的LFM 雷达抗间歇采样转发干扰方法[J].空军工程大学学报,2025,26(5):42-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-09
  • 出版日期: